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Processes of heat and mass transfer of a multiatomic gas in a cylindrical channel 
of circular cross section with arbitrary Knudsen numbers are considered on the 
basis of a model kinetic equation, taking account of the excitation of rotational 
and vibrational degrees of freedom of the molecules. 

The motion of mul~iatomic gas in a cylindrical capillary under the action of pressure 
and temperature gradients was studied in [i]. The solution of the model Hanson-Morse equa- 
tion, taking account of the excitation of a single form of internal energy, was obtained by 
a numerical method. It was shown that, within the limits of accuracy of the calculation, 
the thermal creep does not depend on the total Eucken factor f, while the total heat flux 
due to the temperature gradient does not depend on the translational Eucken factor fir. 
Hence, it was concluded that the thermal creep is independent of the internal degrees of 
freedom of the molecules. This conclusion of [i] is evidently incorrect, since, first, the 
Eucken factors f and ftr are interrelated and, second, ftr also depends on the internal 
degrees of freedom of the molecules [2]. 

In the present work, the heat and mass transfer of a multiatomic gas in a cylindrical 
capillary is described on the basis of the model equation of [3], which, in contrast to the 
Hanson--Morse equation, takes account of the possibility of excitation of two forms of in- 
ternal energy: rotational and vibrational. The problem is solved by a variational method, 
which allows sufficiently accurate results to be obtained over the whole range of Knudsen 
numbers (Kn) and, in addition, leads to a simple analytical expressions for the fluxes in 
the two limiting cases: Kn << i and Kn ~ 1. This permits a clear analysis of the con- 
tribution of internal degrees of freedom of the molecules at different Kn to the thermal 
creep and to each of the components of the heat fluxes due to the pressure and temperature 
gradients. In addition, analytical expressions when Kn << i are of independent interest 
for the experimental study of the characteristic parameters of multiatomic gases. 

Consider the motion of a multiatomic single-component gas in a cylindrical capillary 
of radius Ro due to longitudinal temperature and pressure gradients. (The capillary axis 
coincides with the coordinate axis OZ.) Rotational and vibrational degrees of freedom of 
the molecules are excited here. It is assumed that the translational, rotational, and vi- 
brational temperatures in each cross section of the capillary are equal to each other, and 
to the temperature T, which varies along the channel. The state of the gas is assumed to 
be weakly perturbed, and the distribution function for the molecules in the i-th rotational 
and j-th vibrational states is written in the form of a small deviation from the Maxwell-- 
Boltzmann equation 
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Since intermolecular collisions accompanied by simultaneous transitions in both the 
rotational and the vibrational spectra are very rare [4], they will be neglected. Then, 
taking account of Eq. (i), the model kinetic equation [3] for the perturbation function hij 
is written in the following dimensionless form 
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Here r, c I are two-dimensional vectors in the plane perpendicular to the OZ axis; the coordi- 
nates r, z are referred to Ro; the angle brackets denote averaging over the internal states 
of the molecules. The relaxation times z~, ~rr, Zvv, ZDrr, TDwWith a specified molecular- 
interaction potential may be calculated [4] or taken from experiment [5]. 

if the mean free path length of the molecule is determined in the form [4] ~ ffi (~/4)" 
�9 ~(SkT/~m) z/a, then the rarefaction parameter R of the gas is related to the Knudsen number 
as follows 

R = 2 l =~Kn-t 

The boundary condition adopted is completely diffuse scattering of the gas molecules at 
the capillary surface 

hU([r  I = I, C)=0, n-c• (4) 

where n"is the normal to the channel surface directed toward the center. 

Linearization of the problem allows the solution of Eq. (2) to be written in the form 

hi, = h ~  + h ~  (5)  

S u b s t i t u t i n g  Eq. (5) i n t o  Eqs.  ( 2 ) - ( 4 )  and e q u a t i n g  t e rms  f o r  t h e  d i f f e r e n t  g r a d i e n t s  
l e a d s  t o  a d i v i s i o n  o f  t he  o v e r a l l  p rob lem i n t o  two: t h e  f i r s t  i n c l u d e s  t h e  e q u a t i o n s  d e -  
s c r i b i n g  h e a t  and mass t r a n s f e r  unde r  t h e  a c t i o n  o f  t h e  p r e s s u r e  g r a d i e n t ,  w h i l e  t h e  s econd  
c o r r e s p o n d s  to  t he  a c t i o n  o f  t h e  t e m p e r a t u r e  g r a d i e n t .  
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If Eq. (2) is written in integral form [6], taking account of the boundary conditions 
in Eq. (4), and the resulting expression for the perturbation function is substituted into 
Eq. (3), two independent systems of integral-moment equations may be obtained for the macro- 
scopic velocities up, u T and the translational, rotational, and vibrational components of 
the dimensionless heat fluxes Qp(Z), Q~l) (Z = t, r, v) due to the pressure and temperature 

gradients, respectively 
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values of the macroscopic quantities. The quantities that are of practical interest, how- 
ever, are the numerical I n and heat lq fluxes averaged over the channel cross section 

I 
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where the thermodynamic forces are chosen in  the form [1] 

T 
X~ = --kv, Xq = -- �9 (Ii) To 

According to the thermodynamics of nonequilihrium processes the cross terms should 
satisfy the Onsager reciprocity relation over the whole range of Kn in discontinuous systems 
[7]: Lnq = Lqn. For numerical calculations, it is expedient to use dimensionless quanti- 
ties, related to the kinetic coefficients as follows 

S~J)=-- '( 2--~o)rn , ,,,o__~o .(t) S~/)= \ m I'/2 PoTol ~qo, 1(') l .... t, r, v, (12)  
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I m p o r t a n t  p a r t i c u l a r  cases a re  the e f f e c t  o f  t he rmomo lecu la r  p r e s s u r e  and the  mechano- 
c a l o r i c  e f f e c t .  The f i r s t  i s  a s teady  s t a t e  i n  wh ich  t h e  t empe ra tu re  g r a d i e n t  i s  m a i n t a i n e d  

In Eqs. (6)-(9), the integration is taken over the cross-sectional area of the capillary 
The argument of the function Jn(t) is t = Rlr-dl �9 Equations (6)-(9) define the local 
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constant and the corresponding pressure gradient is established in the system. This state 
is characterized by the absence of a complete numerical flux averaged over the channel cross 
section, i.e., I n = O. Then it follows from Eqs. (10)-(12) that 

Gr ~ dP/P  
? = Gp T d T / T  (13) 

The mechanocaloric effect is a second-order steady state [7] and is characterized by 
heat transfer along the channel with a constant pressure gradient, in the absence of a 
temperature gradient (T = 0). It follows from Eqs. (i0), (12), and (13) that 

lq -- Lnq I n = - - ? k T o l n "  (14) 
L?~ n 

Thus,  the  p a r a m e t e r  y a l s o  d e t e r m i n e s  t he  magn i tude  o f  the  m e c h a n o c a l o r i e  e f f e c t .  

To d e t e r m i n e  the  f l u x e s  i n  Eq. (10) ,  t he  s y s t e m  i n  Eqs.  ( 6 ) - ( 9 )  must be s o l v e d .  These 
a r e  F r e d h o l m - t y p e  e q u a t i o n s  o f  t he  second  k i n d ,  t he  B u b n o v - G a l e r k i n  method may be used  f o r  
their solution [8]. Choice of the type of trial functions for the macroparameters is im- 
portant here. Note that the profiles of the macroscopic quantities in almost free-molecular 
conditions is accurately described by the free terms of the integral Eqs. (6)-(9). There- 
fore, if the solution is to describe the whole range of Kn, the form of the trial functions 
must be chosen on the basis of the ~mcroparameters in almost continuum conditions. Taking 
account of the problem symmetry, the desired functions up, T, Q (1)~ (Z = t, r, v) may be 

P, T 
written as series expansions in the four basis functions {r ~k} (k = 0, I, ...). In par- 
ticular, in the first approximation, the following expressions may be written 

uk (r) = ak + bkr ~, 
(15) 

Q~t) ( r ) = t  t) , l = t ,  r, v, k = P ,  T. 

The trial functions in Eq. (15) correspond in form with the solutions of the Navier-- 
Stokes and heat-conduction equations. As shown by the solution of the analogous problem for 
a monoatomic gas [9], this approximation has an error of no more than 1.5% over the whole 
range of Kn. The same accuracy should also evidently be expected in the case of a multi- 
atomic gas. 

To determine the constants ak, bk, c~ Z), the trial functions in Eq. (15) must be sub- 

stituted into Eqs. (6)-(9) and orthogonality of the discrepancy obtained to the chosen basis 
functions is required. The orthogonality condition takes the form 

! 

(f, g)--- 2~ [ f (r) g (0 ~d~ = o. 
0 

Thus, the quantities a k, bk, c~ ~) are found from the solution of a system of five 
linear algebraic equations. Once they are known, it is not difficult to obtain expressions 
for the fluxes In, lq and the parameter y. The final expressions are unwieldy in form, and 
therefore are not given here. 

The asymptotic expansions of these expressions are of interest for two limiting cases: 
almost free-molecular conditions (R <<i) 

Gp = 0.72225 + 0,5R In R - -  0,1921 R - -  0,4012R 2, 

Gr = 0,37613 + 0.5R In R + 0.0579R - -  0,6018R 2, 

S~ ~ = Gr, S~ ) = S~ ) = O, (16) 

S~ ) = 1.6926 + 1,25R lnR - -  0.23025R - -  1,3039R~, 

= T ~ '  = T  Op; 

almost-continuum conditions (R ~ i) 

Gp=T + +I +... ; (17) 
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The asymptotic expressions for S~ v) and S~ v) are obtained, respectively, from the expres- 

sions for S~ r) and S~ r) by replacing the index r by v and the parameters ~ and 8 by ~' and 

In conditions close to the free-molecular case, Eq. (16) for the fluxes Gp, GT, S (t) 
corresponds to the case of a monoatomic gas [9] v) �9 The internal components s~r~, S 
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of the heat flux due to the pressure gradient are zero in this case, as a result of the 
absence of the only factor which causes them: inelastic collision between molecules. 

Equations (17)-(22), which, with the exception of Eq. (17), are obtained here for the 
first time, describe the heat and mass transfer of a multiatomic gas in a capillary when 
R >> I, in the case where the basis role is played by intermolecular collisions. If the 
vibrational degrees of freedom of the molecule are not excited, the first terms for Gp, GT, 
and S T coincide with those given in [i]; the second terms in the expansions (~R -2) in Eqs. 
(18), (21), and (22) show that the thermal creep and the total heat flux due to the tem- 
perature gradient have a complex dependence both on f and on ftr. This result does not 
agree with the conclusions of [i]. 

Numerical calculations of the macroscopic quantities are performed with an accuracy of 
no less than 0.1% for any value of R (0.01 ~ R ~ 30). The values of a, a', B, 8' are 
chosen on the basis of experiment. The value of a varies from zero (slow energy transfer be- 
tween the translational and rotational degrees of freedom of the molecules, T~ ~ ~rr) to 
1.2 (easy energy transfer, T~ ~ Trr) [4]. Since in the scale of the mean free path of the 
molecules the vibrational relaxation is a very slow process (the vibrational collisional 
numbers are of the order of 10s-107 [i0]), the parameter a' is chosen in the interval [0; 
0.001]. The choice made for 8 = 0Drr/~ and 8' = 0Dw/n (0 = mn) is 8 ~ 8' ~ 1.32, which 
is valid for a wide temperature range for nonpolar molecules [4, i0, ii]. 

In the absence of inelastic collisions with a = a' = 0 (the Eucken approximation), the 
thermal creep G T and translational components of the heat fluxes S~t), S (t) are no different 

P T 
from the results for a monoatomic gas [9], while the internal components S~ r), S~ v) of the 
heat flux are zero. Hence, the internal degrees of freedom of the molecules only make a 
contribution to these fluxes in the presence of inelastic collisions. The internal com- 

ponents S r), S v) of the heat flux due to the temperature gradient are the result both of 
inelastic collisions and of diffusional transfer of rotationally and vibrationally excited 
molecules, respectively. 

Numerical estimates of the contribution of internal degrees of freedom of the molecules 
at various values of R may be given here. The Poiseuille flux Gp depends very weakly on the 
internal degrees of freedom of the molecules: their greatest contribution is 1.5% when R = 
i, a = 1.2 for a diatomic gas with rotational degrees of freedom (c~/k = I). The Poiseuille 
flux is reduced here. 

The relative contribution of rotational degrees of freedom of diatomic molecules to 
the thermal creep G T at various values of R is shown in Fig. la. With increases in R, the 
thermal creep decreases, and is zero in the hydrodynamic limit. The relative contribution 
of internal degrees of freedom increases with increase in R. Thus, in viscous conditions 
with slip (R = 30), the decrease in G T in comparison with the results for a monoatomic gas 
G~O) reaches 16.5% with increase in a from 0 to 1.2. Decrease in the thermal creep is due 

to the conversion of some of the translational energy of the molecules to internal energy 
in inelastic collisions. 

In Figs. ib and 2a, the translational Sp(t), rotational s~r), and vibrational S~ v) 

components of the heat flux due to the pressure gradient are shown as a function of the 
rarefaction parameter R and the parameter a for a diatomic gas. It follows from Fig. Ib 
that, when R>> I, the decrease in the translational component of the isothermal heat flux 
in comparison with the results for a monoatomic gas S~ ~ amounts to 35% when a = 1.2. 

The isothermal heat fluxes S~ t) , s~r), S~ v) are purely kinetic phenomena occurring only 

in a rarefied gas. In the limit of a continuous medium, they do not exist (Fig. 2a). In 
almost free-molecular conditions, as in Eq. (16), the heat transfer is due solely to trans- 
lational motion of the molecules. This means that, in intermediate conditions, the fluxes 

S~ r), S~ v) should have a maximum (Fig. 2a). It is evident that, with increase in a at fixed 
R, S~v) decreases; this indicates a dependence of the vibrational component of the iso- 

thermal heat flux on the proportion of translational--rotational transitions in intermolecular 
collisions. 
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Fig. i. Relative contribution of inelastic intermolecu- 
lar collisions to the thermal creep GT, % (a)~ and 
translational components of the heat flux s~t), % (b), 

for a diatomic gas (c~/k = i) when R = 30 (i), I0 (2), 
5 (3), 1 (4), 0.4 (5), 0 . i  (6), 0.01 (7). 
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Fig. 2. Internal components of the heat fluxes S~ r) and 

S~ v)" (a) with e = 0.3 (I) and 1.2 (2) and the totalL heat 
flux due to the temperature gradient (b) for a dlatomic 
gas (c~/k = c~/k = i) as a function of the rarefaction 
parameter R. 

-s~ ~' . ~  I ~§ L ~ 

\ 2 i /  

% o,3. g o,9 o122z qos~ q3 qe o,e O,,02 f 

F ig .  3. The c o n t r i b u t i o n  o f  i n e l a s t i c  i n t e ~ o l e c u l a r  c o l l i s i o n s  
to the total heat flux due to the temperature gradient (a) for a 
diatomic gas with rotational-vibrational degrees of freedom of 
the molecules ST(RV) , %, c~/k = c~/k = i (continuous curves), with 

purely rotational degrees of freedom ST (R), %, c~/k = i (dashed 
curves) when R = 0.01 (a), i (2), i0 (3), and 30 (4), and to each 
of the components of the heat flux (b): i) s(t); 2) s(r);~ 3) 

s~ v)" (R = 3o). 
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Fig. 4. Ratio of 7 for the sample 
gas to 7o for a monoatomic gas as a 
function of the rarefaction parameter 
R. 

TABLE I. Experimental Values of the Translational 
Eucken Factor ftr the Proportion of Inelastic 
Collisions a, and the Rotational Collisional Num- 
ber Z r 

Gas fir a z r 

N~ 

CO., 

CH4 

Kr 

2,24~0,01 

2,05+0,02 

2,29+_0,02 

2,53~0~01 

0,437+_0,028 

0,547+0,054 

0,172+0,023 

0 

2,91~0, 19 

2,33+_0,23 

7,39!0,95 
OC 

The total heat fluxes for a diatomic gas with vibrational--rotational (curve i) and 
purely rotational (curve 2) degree s of freedom and a monoatomic gas (curve 3) are shown in 

2b as a function of m. For each component of the flux S$ t), sSr), and SSV), when R>> Fig. 

i, the Fourier hear'conduction law holds. In almost free-molecular conditions, the fluxes 

SI r)- and S~ v)- are also nonzero in Eq. (16), since they are due to the diffusion of rota- 
tionally and vibrationally excited molecules. 

The relative contribution of the internal degrees of freedom of the molecules to the 
total heat flux due to the temperature gradient is shown in Fig. 3 as a function of the 
proportion of inelastic collisions awith variousvalues of R. It is evident that the total 
heat flux due to the temperature gradient depends strongly onthe internal degrees of free- 
dom of the molecules for all values of R. For a gas with rotational--vibrational degrees of 
freedom of the molecules, their relative contribution is 63-89%; for a gas with purely ro- 
tational degrees of freedom, ,the corresponding figure is 27-44%. The deviation from the 

S~ ~ is greatest in the limit close to free-molecular conditions result for a monoatomic gas 

(R = 0.01), which is explained by the great contribution of the diffusional mechanism of heat 
transfer in these conditions. With increase in the proportion of inelastic collisions, the 
total heat flux decreases (Fig. 3a). This is because the decrease in the translational 

S~ t) with increase in a is larger than the increase in the internal component of component 

the!heat flux S~ r)- (Fig. 3b). 

Using Eqs. (17) and (18), the proportion of inelastic collisions u (or the rotational 
number Z r [2, 4]) may be determined from a comparison of theory and experimental results 
for the thermomolecular pressure. These formulas have been used in the analysis of experi- 
mental data for several multiatomic gases [12] obtained for long glass capillaries with a 
mean temperature To ~ 283~ and a temperature difference AT ~ 20~ To eliminate an 
accommodational dependence of the thermal creep [12], the ratio of 7 for the sample gas to 
7o for a monoatomic gas is determined from experiment for R >> i. Krypton is chosen as the 
monoatomic gas, since the accommodation coefficient in krypton is close to the accommodation 
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coefficients of the gases under investigation. As a result, values of ftr ~, and the ro- 
tational number Z r are obtained (Table i). The results obtained for Z r agree with existing 
data [13]. 

A comparison of theory with experiment is shown in Fig. 4, The theoretical results 
(continuous curves) are obtained with the values of a in Table i. The discrepancy between 
the theoretical and experimental results is no more than 2% over the whole range of R in- 
vestigated. 

NOTATION 

Kn, Knudsen number; f, ftr, total and translational Eucken factors; Ro, capillary 
radius; m, molecular mass; k, Boltzmann's constant; n, T, numerical density and temperature 
of gas; vi, i-th component of the molecular velocity; hij , perturbation function; E~r), 

E~ v)," energy of the i-th - ~(r) =(v) .... ill r m rotational and j-th vibrational l@vels; mo , =n , ~- b iu 
3 

of the rotational and vibrational energy; p~r), p~V), probability-of rotational and values 
r v . . 

vibrational states of energy E i and E~; ~, ~, logarlthmlc pressure and temperature gradients; 
�9 r v 

To, mean gas temperature; R, rarefactzon parameter of gas, CV, CV, contributions of rota- 
tional and vibrational degrees of freedom of the molecule to the specific heat at constant 
volume; U, macroscopic gas velocity; q(t), q(r), q(V), components of the heat flux density 
due to translational, rotational, and vibrational degrees of freedom of the molecules; P, 
n, pressure and dynamic viscosity of the gas; Z, free path length of molecules; up, velocity 
of Poiseuille flow; UT, rate of thermal creep; Z, cross-sectional area of capillary; In, Iq, 
numerical and heat fluxes averaged over the channel cross section; Y, universal index char- 
acterizing the thermomolecular pressure difference; A t , I r, A v, thermal conductivities due 
to translational, rotational, and vibrational degrees of freedom of the molecules; p, mass 
density of the gas; Drr, Dvv, diffusion coefficients of rotationally and vibrationally ex- 
cited molecules among the unexcited molecules; Zr, rotational collisional number. 
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